on the possible volume of $mu$-$(v,k,t)$ trades

Authors

s. rashidi

n. ‎soltankhah

abstract

‎a $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $t_1$‎, ‎$t_2‎, ‎dots t_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $v$ the number of‎ ‎blocks containing this t-subset is the same in each $t_i (1leq‎ ‎i leq mu)$‎. ‎in other words any pair of collections ${t_i,t_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. in this paper we investigate the existence of $mu$-way $(v,k,t)$ trades and prove‎ ‎the existence of‎: ‎(i)~3-way $(v,k,1)$ trades (steiner‎ ‎trades) of each volume $m,mgeq2$‎. ‎(ii) 3-way $(v,k,2)$ trades of‎ ‎each volume $m,mgeq6$ except possibly $m=7$‎. ‎we establish the‎ ‎non-existence of 3-way $(v,3,2)$ trade of volume 7‎. ‎it is shown that‎ ‎the volume of a 3-way $(v,k,2)$ steiner trade is at least $2k$ for‎ ‎$kgeq4$‎. ‎also the spectrum of 3-way $(v,k,2)$ steiner trades for‎ ‎$k=3$ and 4 are specified‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

full text

The minimum volume of subspace trades

A subspace bitrade of type Tq(t, k, v) is a pair (T0, T1) of two disjoint nonempty collections (trades) of k-dimensional subspaces of a v-dimensional space F v over the finite field of order q such that every t-dimensional subspace of V is covered by the same number of subspaces from T0 and T1. In a previous paper, the minimum cardinality of a subspace Tq(t, t + 1, v) bitrade was establish. We ...

full text

On the volume of trades in triple systems

This paper gives a complete answer to the question: For which values of v and s does there exist a graph G, having v non-isolated vertices, and a pair of disjoint sets of s triangles each forming a partition of the edge set of G?

full text

survey on the rule of the due & hindering relying on the sheikh ansaris ideas

قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...

15 صفحه اول

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

the impact of morphological awareness on the vocabulary development of the iranian efl students

this study investigated the impact of explicit instruction of morphemic analysis and synthesis on the vocabulary development of the students. the participants were 90 junior high school students divided into two experimental groups and one control group. morphological awareness techniques (analysis/synthesis) and conventional techniques were used to teach vocabulary in the experimental groups a...

15 صفحه اول

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 40

issue 6 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023